
eventos 
javascript 
svg dom 

Helder da Rocha (helder@argonavis.com.br) 

ar
go

na
vi

s.
co

m
.b

r
Eventos 

•  SVG pode responder a eventos iniciados pelo usuário através de recursos 
da linguagem 
•  Movimento do mouse ou cliques podem disparar animações, scripts ou 

realização de hiperlinks, zoom e rolagem, mudanças do cursor, etc. 

•  Aspectos de SVG afetados por eventos 
•  Ouvintes de eventos do DOM (DOM listeners) registrados por scripts, e que 

chamam outro script quando executados 

•  Atributos de eventos em elementos, que indicam script a executar quando o 
evento acontecer 

•  Elementos de animação podem começar ou parar uma animação com base 
em eventos 

•  Atributos permitem ligar, desligar ou controlar a forma como eventos são 
tratados por elementos 
•  pointer‐events – controla aspectos de cliques, movimentos 

•  zoomAndPan – controla interaJvidade de zoom 

•  cursor – controla a aparência do cursor (também existe um elemento <cursor> 
que permite definir um cursor específico) 

2 

ar
go

na
vi

s.
co

m
.b

r
Alguns atributos de evento 

•  onfocusin e onfocusout 
•  Chamados quando elemento recebe ou perde foco  

(quando um texto é selecionado, por exemplo) 
•  onac>vate 

•  Chamado quando um elemento é aJvado através de um clique ou 
tecla 

•  onclick, onmouseup, onmousedown 
•  Chamados quando um mouse é clicado sobre o elemento 

•  onmouseover, onmousemove, onmouseout 
•  Chamados de acordo com o movimento do mouse sobre um elemento 

•  onload, onunload, onerror 
•  Eventos relacionados à carga do objeto na memória. 

•  onresize, onscroll, onzoom 
•  Chamados quando usuário redimensiona a tela, rola, usa zoom 

•  onbegin, onend, onrepeat 
•  Eventos relacionados ao comportamento de animação 

3 

xxx      => evento 
onxxx => atributo 

ar
go

na
vi

s.
co

m
.b

r
Scrip>ng 

•  Para especificar a linguagem usada  

•  Atributo contentScriptType de <svg> (default applica>on/
ecmascript) ou atributo type do elemento <script> 
(default text/ecmascript) 

•  Se o cliente nao suportar a linguagem, nenhum bloco 
script é executado 

•  O elemento <script>  

•  Aceita declaração local de código <script>...</script> 
•  Aceita arquivo externo via  
<script xlink:href="arquivo.js" /> 

4 

ar
go

na
vi

s.
co

m
.b

r
SVG Document Object Model 

•  Permite usar scripts para controlar componentes SVG 
•  h;p://www.w3.org/TR/SVG/svgdom.html 

•  SVG DOM estende XML DOM 
•  Interfaces do SVG DOM herdam do XML DOM 

•  Pode‐se fazer quase tudo conhecendo‐se apenas o XML DOM 

•  SVGElement herda de Element (que herda de Node) 

•  SVGDocument herda de Document (que também é Node) 

•  Objetos especiais:  
•  document (ponteiro para /) 

•  evt (ponteiro para evento)  

•  Ponteiro para qualquer elemento pelo ID: 
•  document.getElementById("id"); 

•  Elemento que foi fonte de um evento: 
•  var elemento = evt.target; 

5 

ar
go

na
vi

s.
co

m
.b

r
SVG DOM 

•  Possui interfaces específicas para cada objeto do SVG 
•  SVGElement, SVGSVGElement, SVGRectElement, 

SVGImageElement, SVGPathElement, etc. 

•  SVGStyleElement e propriedade style (da W3C spec DOM 2 CSS) 

•  Propriedades click, mouseover, etc. (W3C spec DOM 2 Events) 

•  SVGColor, SVGPaint, SVGTransform, etc. 

•  A maior parte apenas expõe propriedades dos elementos 
•  Outros como SVGColor, SVGTransform e similares têm métodos 

e propriedades que facilitam a manipulação 

•  Exemplo: SVGStyleElement (igual a style do HTML DOM) 
•  Para obter, use SVGElement.getStyle() ou style 
 document.getElementById("obj").style.fill="yellow" 

6 

ar
go

na
vi

s.
co

m
.b

r
Exemplos de uso do SVG/XML DOM 

•  document.getElementById(id) 
 var objeto = document.getElementById("seta"); 

•  document.documentElement ou document.rootElement 
 var filhos = document.documentElement.childNodes.length; 

 funcion init(evt) { 
     var svg = evt.target.ownerDocument.documentRoot;  
}  

•  SVGEvent.target é um SVGElement: 
 function printParent(evt) {  
     alert(evt.target.parentNode.nodeName); 
} 

•  Para manipular atributos 
 evt.target.getAttribute("height"); 

 evt.target.setAttribute("fill", "red"); 

•  Criar elemento e adicioná‐lo como filho de <svg> 
 var rect = document.createElement("rect"); 
rect.setAttribute("width", 100); 
document.rootElement.appendChild(rect);  7 

ar
go

na
vi

s.
co

m
.b

r
Exemplo simples com JavaScript 

8 

<svg width="100%" height="100%" xmlns="http://www.w3.org/2000/svg"> 

  <script type="text/ecmascript"> 
  <![CDATA[ 
    function acende(evt) {  
       evt.target.setAttribute("opacity", "1.0");  
    }  
    function apaga(evt) {  
       evt.target.setAttribute("opacity", "0.4");  
    } 
  ]]>  
  </script>  

    <g>  
        <rect x="10"  y="100" width="45" height="45" fill="red" opacity="0.4"    

     onmouseover="acende(evt);" onmouseout="apaga(evt);"/>  
        <rect x="65" y="100" width="45" height="45" fill="blue" opacity="0.4"  

     onmouseover="acende(evt);" onmouseout="apaga(evt);"/>  
...  
    </g>   
</svg> 

ar
go

na
vi

s.
co

m
.b

r
XML DOM 2: Principais elementos

DocumentFragment 

Document 

CharacterData 
Text 

Comment 

CDATASection 

Attr 

Element 

DocumentType 

Notation 

Entity 

EntityReference 

ProcessingInstruction 

Node 
NodeList 

NamedNodeMap 

XMLHTTPRequest 

Somente DOM 3.0 

ar
go

na
vi

s.
co

m
.b

r
Alguns métodos da interface Node 

•  Node     appendChild(Node) 
•  Node     cloneNode(boolean) 
•  NamedNodeMap getA[ributes()      a[ributes 
•  NodeList    getChildNodes()        childNodes 
•  boolean     hasA[ributes()   
•  boolean     hasChildNodes() 
•  Node     insertBefore(Node, Node) 
•  Node     removeChild(Node) 
•  Node     replaceChild(Node, Node) 
•  Node     getFirstChild()        firstChild 
•  Node     getLastChild()        lastChild 
•  Node     getNextSibling()        nextSibling 
•  Node     getPreviousSibling()      previousSibling 
•  String     getNodeName()        nodeName 
•  short     getNodeType()        nodeType 
•  String     getNodeValue()        nodeValue 
•  Document  getOwnerDocument()    ownerDocument 
•  Node     getParentNode()        parentNode 

10 

atalhos! 

ar
go

na
vi

s.
co

m
.b

r
DOM: tipos de nó

•  DOM usa constantes para identificar tipos de nó (nodeType)
 Constante (opcional) Tipo valor
•  ELEMENT_NODE Element 1
•  ATTRIBUTE_NODE Attr 2
•  TEXT_NODE Text 3
•  CDATA_SECTION_NODE CDATASection 4
•  ENTITY_REFERENCE_NODE EntityReference 5
•  ENTITY_NODE Entity 6
•  PROCESSING_INSTRUCTION_NODE ProcessingInstruction 7
•  COMMENT_NODE Comment 8
•  DOCUMENT_NODE Document 9
•  DOCUMENT_TYPE_NODE DocumentType 10
•  DOCUMENT_FRAGMENT_NODE DocumentFragment 11
•  NOTATION_NODE Notation 12

ar
go

na
vi

s.
co

m
.b

r
Métodos para listas e mapas 

•  NamedNodeMap 
•  Node  item(int)   
•  Node  getNamedItem(String) 
•  Node  nextNode() 
•  void   reset() 
•  int    getLength()      length 

•  NodeList 
•  Node  item(int) 
•  Node  nextNode() 
•  void   reset() 
•  int    getLength()      length 

12 

ar
go

na
vi

s.
co

m
.b

r
Exemplo com Node 

13 

<svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" onload="numFilhos()"> 
   <script><![CDATA[ 
     function numFilhos() { 
        var data = "Elementos contidos em <svg>: "+document.documentElement.getChildNodes().length; 
        alert(data); 
     } 
     function infoElemento(evt) { 
          var atributos = evt.target.attributes; 
          var data = "Element: <" + evt.target.nodeName; 
          for (i = 0; i < atributos.length; i++) { 
             data += " " + atributos.item(i).name + "='" + atributos.item(i).value + "'"; 
          } 
          data += ">\nParent: <" + evt.target.parentNode.nodeName + ">"; 
          data += "\nPrevious sibling: <" + evt.target.previousSibling.nodeName + ">"; 
          data += "\nNext sibling: <" + evt.target.nextSibling.nodeName + ">"; 
          alert(data); 
     } 
   ]]></script> 
    <g> 
        <rect x="50" y="50" height="100" width="100" fill="red" onclick="infoElemento(evt)" /> 
<circle cx="225" cy="100" r="50" fill="blue" onclick="infoElemento(evt)"/><g font‐size="10pt"> 
           <text x="300" y="50">Ubi dubium ibi libertas</text> 
        </g>  
    </g> 
</svg> 

ar
go

na
vi

s.
co

m
.b

r
Interface Element 

•  String     getA[ribute(String) 
•  String     getA[ributeNS(String, String) 
•  Akr      getA[ributeNode(String) 
•  Akr      getA[ributeNodeNS(String, String) 
•  NodeList   getElementsByTagName(String) 
•  NodeList   getElementsByTagNameNS(String, String) 
•  String     getTagName()          tagName 
•  boolean    hasA[ribute(String) 
•  boolean    hasA[ributeNS(String, String) 
•  void     removeA[ribute(String) 
•  void      removeA[ributeNS(String, String) 
•  void     setA[ribute(String, String) 
•  void     setA[ributeNS(String, String, String) 

14 

ar
go

na
vi

s.
co

m
.b

r
Interfaces A[r e Text 

•  Akr 
•  String     getName()           name 
•  Element   getOwnerElement()      ownerElement 
•  String     getValue()           value 
•  void      setValue(String) 

•  Text e CharacterData 
•  void      appendData(String) 
•  String     getData()            data 
•  int       getLength()          length 
•  void      insertData(int, String) 
•  void      replaceData(int, int, String) 
•  void      setData(String) 

15 

ar
go

na
vi

s.
co

m
.b

r
Exemplo: elementos e atributos 

16 

<svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%"> 
   <script><![CDATA[ 
       function trocaLugar() { 
            var rect = document.getElementsByTagName("rect").item(0); 
            var circle = document.getElementsByTagName("circle").item(0); 
            if (rect.getAttribute("x") == 50) { 
                rect.setAttribute("x", "175"); 
                circle.setAttribute("cx", "100"); 
            } else { 
                rect.setAttribute("x", "50"); 
                circle.setAttribute("cx", "225"); 
            } 
       } 

       var angulo = 0; 
       function gira(evt) { 
           if (angulo <= 360) { angulo += 45; 
           } else { angulo = 0; } 
           evt.target.setAttribute("transform", "rotate("+angulo+", 300, 50)"); 
       } 
   ]]></script> 

    <g> 
        <rect x="50" y="50" height="100" width="100" fill="red" onclick="trocaLugar()" /> 
        <circle cx="225" cy="100" r="50" fill="blue"/> 
        <g font‐size="10pt" onclick="gira(evt)"> 
            <text x="300" y="50">Ubi dubium ibi libertas</text> 
        </g>  
    </g> 
</svg> 

ar
go

na
vi

s.
co

m
.b

r
Separando scripts do SVG 

•  Boa práJca: faça isto sempre que possível 
•  Permite reuso das funções por outras aplicações (ex: SVG, HTML5, XHTML) 
•  Facilita depuração do JS, simplifica geração de SVG, aumenta a legibilidade 

17 

/* funcoes usadas em exemplo2.svg */ 

var angulo = 0; 
function gira(evt) { 
   if (angulo <= 360) { 
      angulo += 45; 
   } else { 
      angulo = 0; 
   } 
   evt.target.setAttribute("transform", "rotate("+angulo+", 300, 50)"); 
} 

function trocaLugar() { 
    var rect = document.getElementsByTagName("rect").item(0); 
    var circle = document.getElementsByTagName("circle").item(0); 
    if (rect.getAttribute("x") == 50) { 
        rect.setAttribute("x", "175"); 
        circle.setAttribute("cx", "100"); 
    } else { 
        rect.setAttribute("x", "50"); 
        circle.setAttribute("cx", "225"); 
    } 
} 

<svg xmlns="http://www.w3.org/2000/svg"> 

  <script type="text/ecmascript" xlink:href="script2.js" /> 

  <g> 
    <rect x="50" y="50" height="100" width="100" fill="red" 
onclick="trocaLugar()" /> ... 
    <g font‐size="10pt" onclick="gira(evt)"> 
      <text x="300" y="50">Ubi dubium ibi libertas</text></g>  
  </g> 
</svg> 

script2.js 

exemplo2.svg 

ar
go

na
vi

s.
co

m
.b

r
DOM 2.0 com namespaces 

•  Use métodos que levam em conta o namespace 
•  É necessário para acessar elementos e atributos que 
usam namespaces (ex: xlink) 

•  É necessário quando se usa SVG com namespaces (ex: 
quando usado junto com XHTML, XSL‐FO, etc.) 

•  Em vez de getAkribute, getElement, etc. 
•  Use getAkributeNS, getElementNS, etc. 

18 

var svgNS = "http://www.w3.org/2000/svg"; 
var xlinkNS = "http://www.w3.org/1999/xlink"; 

var circle = document.createElementNS(svgNS,"circle"); 
circle.setAttributeNS(null,"cx",500); 
circle.setAttributeNS(null,"cy",500); 
circle.setAttributeNS(xlinkNS, "href", "http://www.a/com"); 

ar
go

na
vi

s.
co

m
.b

r
Interface Document 

•  Akr      createA[ribute(String) 

•  Akr      createA[ributeNS(String, String)  

•  Element   createElement(String) 

•  Element   createElementNS(String, String) 

•  Text     createTextNode(String) 

•  DocumentType  getDocType()     docType 

•  Element  getDocumentElement()    documentElement 

•  Element   getDocumentById(String) 

•  NodeList  getElementsByTagName(String) 

•  NodeList  getElementsByTagNameNS(String, String) 

19 

ar
go

na
vi

s.
co

m
.b

r
Exemplo: criando elementos 

20 

var svgNS = "http://www.w3.org/2000/svg"; 

function criarCirculo(evt) { 
   var randomX =  
       Math.floor( Math.random() * document.rootElement.getAttributeNS(null, "width")   ); 
   var randomY =  
       Math.floor( Math.random() * document.rootElement.getAttributeNS(null, "height")  ); 
   var color = "rgb(" + Math.floor(Math.random() * 256) +", "+  
                        Math.floor(Math.random() * 256) +", "+  
                        Math.floor(Math.random() * 256) +")"; 

   var circulo = document.createElementNS(svgNS, "circle"); 
   circulo.setAttributeNS(null, "cx", randomX); 
   circulo.setAttributeNS(null, "cy", randomY); 
   circulo.setAttributeNS(null, "fill", color); 
   circulo.setAttributeNS(null, "r",  
                          evt.target.getAttributeNS(null, "r")); 

   circulo.addEventListener("click", criarCirculo, false); 

   evt.target.parentNode.appendChild(circulo); 
} 

<svg xmlns="http://www.w3.org/2000/svg" width="500" height="500"> 
   <script type="text/ecmascript" xlink:href="script_3.js" /> 
   <circle cx="125" cy="40" r="5"   fill="green" onclick="criarCirculo(evt)"/> 
   <circle cx="225" cy="100" r="10" fill="blue" onclick="criarCirculo(evt)"/> 
   <circle cx="325" cy="170" r="15" fill="red"  onclick="criarCirculo(evt)"/> 
</svg> 

script_3.js 

ar
go

na
vi

s.
co

m
.b

r
Animação usando SVG DOM 

21 

<svg width="500px" height="500px"  viewBox="0 0 500 500" 
     xmlns="http://www.w3.org/2000/svg" version="1.1" 
     xmlns:xlink="http://www.w3.org/1999/xlink"> 

  <script type="text/ecmascript" xlink:href="script_5.js"/> 

  <line x1="50"  y1="0" x2="50"  y2="200" stroke‐width="2" stroke="black" /> 
  <line x1="450" y1="0" x2="450" y2="200" stroke‐width="2" stroke="black" /> 
  <circle cx="50"  cy="100" r="17.64" fill="black"></circle> 
  <circle cx="150" cy="100" r="17.64" fill="blue" ></circle> 
  <circle cx="250" cy="100" r="17.64" fill="red"  ></circle> 
  <circle cx="350" cy="100" r="17.64" fill="green"></circle> 

  <g id="barquinho" transform="translate(50,140)" onclick="iniciarMovimento(evt)"> 
      <path d="M‐25,‐12.5 C‐25,0 25,0 25,‐12.5 L 0,‐100.5 z" 
            fill="yellow" stroke="red" stroke‐width="7.06" > 
      </path> 
  </g> 
</svg> 

var x   = 0.0; 
var fim = 400.0; 
var barquinho; 

function iniciarMovimento(evt) { barquinho = evt.target;   mover(); } 
function mover() { 
    if (x >= fim) { return; } 
    x = x + 1; 
    barquinho.setAttributeNS(null, 'transform', "translate(" + x + ",0)"); 
    if (x > 50) { 
        barquinho.setAttributeNS(null, 'opacity', (fim ‐ x) / fim); 
    } 
    setTimeout("mover()", 30); 
} 

Use funções 
recursivas com 
setTimeout() 
para animações 
simples 

script_5.js 

